Citation information available on Google Scholar. Group members are underlined.


39. Jadhav, A.L.; Juran, T.R.; Kim, M.A.; Bruck, A.M.; Hawkins, B.E.; Gallaway, J.W.; Smeu, M.; Messinger, R.J. “Reversible Electrochemical Anionic Redox in Rechargeable Multivalent-Ion Batteries,” Journal of the American Chemical Society, 2023,145, 15816−15826.

JACS Spotlight feature.

38. Guida, D.P.; Stavola, A.M.; Chuang, A.C.; Okasinski, J.S.; Wendling, M.T.; Chadderdon, X.H.; and Gallaway, J.W.Methods for Tomographic Segmentation in Pseudo-Cylindrical Coordinates for Bobbin-Type Batteries,” ACS Measurement Science Au, in press, 2023.

37. Kim, M.A.; Zimmerer, E.K.; Schorr, N.B.; Okasinski, J.S.; Chuang, A.C.; Lambert, T.N.; and Gallaway, J.W. Li-ion and Na-ion ion intercalation in layered MnO2 cathodes enabled by using bismuth as a cation pillar,” Journal of Materials Chemistry A2023, 11, 11272-11287. 

36. Stavola, A.M.; Sun, X.; Guida, D.P.; Bruck, A.M.; Cao, D.; Okasinski, J.S.; Chuang, A.C.; Zhu, H.; and Gallaway, J.W. Lithiation Gradients And Tortuosity Factors In Thick NMC111-Argyrodite Solid-State Cathodes,” ACS Energy Letters2023, 8, 1273−1280.

35. Guida, D.P.; Chuang, A.C.; Okasinski, J.S.; Wendling, M.T.; Chadderdon, X.H.; and Gallaway, J.W. Discharge intermittency considerably changes ZnO spatial distribution in porous Zn anodes,” J Power Sources2023, 556, 232460.

The distribution of ZnO in alkaline Zn anodes is a strong function of how the cell was discharged, i.e. pulsed vs. continuous.



33. Schorr, N.B.; Arnot, D.J.; Bruck, A.M.; Duay, J.; Kelly, M.; Habing, R.L.; Ricketts, L.S.; Vigil, J.A.; Gallaway, J.W.; and Lambert, T.N., “Rechargeable Alkaline Zinc/Copper Oxide Batteries.” ACS Applied Energy Materials2021, 4, 7073-7082.

32. Zhang, Q.; Bruck, A.M.; Stavola, A.M.; Liang, W.; Aurora, P.; and Gallaway, J.W., “Enhanced electrochemical stability of sulfide – based LiNi0.8Mn0.1Co0.1O2 all solid-state batteries by surface altering processes.” Batteries & Supercaps2021, 4, 529-535.

Stability of NMC811 is achieved by doping Ti at the particle surface.


31. Sun, X.; Stavola, A.M.; Cao, D.; Bruck, A.M.; Wang, Y.; Zhang, Y.; Luan, P.; Gallaway, J.W.; Zhu, H., “Operando Study of All-Solid-State Lithium Batteries Coupling Thioantimonate Superionic Conductors with Metal Sulfide.” Advanced Energy Materials2020, 2002861.

30. Bruck, A.M.; Kim, M.A.; Ma, L.; Ehrlich, S.N.; Okasinski, J.S.; and Gallaway, J.W., “Bismuth Enables the Formation of Disordered Birnessite in Rechargeable Alkaline Batteries.” Journal of the Electrochemical Society, 2020, 167, 110514.

This work describes a disordered intermediate species during the charge step of rechargeable alkaline MnO2 batteries.

29. Marschilok, A. C.; Bruck, A.M.; Abraham, A.; Stackhouse, C.; Takeuchi, K. J.; Takeuchi, E. S.; Croft, M.; Gallaway, J.W., “Energy dispersive X-ray diffraction (EDXRD) for operando materials characterization within batteries.” Physical Chemistry Chemical Physics2020, 22, 20972-20989.

Cover art feature.

A review paper on EDXRD for battery analysis, mostly highlighting work from the NSLS.


28. Gallaway, J. W.; Yadav, G. G.; Turney, D. E.; Nyce, M.; Huang, J.; Chen-Wiegart, Y.-C. K.; Williams, G.; Thieme, J.; Okasinski, J. S.; Wei, X.; Banerjee, S., “An Operando Study of the Initial Discharge of Bi and Bi/Cu Modified MnO2.” Journal of the Electrochemical Society, 2018, 165 (13), A2935-A2947.

Publications Prior to Northeastern University


27. Yadav, G. G.; Wei, X.; Gallaway, J. W.; Chaudhry, Z.; Shin, A.; Huang, J.; Yakobov, R.; Nyce, M.; Vanderklaauw, N.; Banerjee, S., “Rapid electrochemical synthesis of δ-MnO2 from γ-MnO2 and unleashing its performance as an energy dense electrode.” Materials Today Energy, 2017, 6 (Supplement C), 198-210.

26. Huang, J.; Yadav, G. G.; Gallaway, J. W.; Wei, X.; Nyce, M.; Banerjee, S., “A calcium hydroxide interlayer as a selective separator for rechargeable alkaline Zn/MnO2 batteries.” Electrochemistry Communications, 2017, 81, 136-140.

25. Turney, D. E.; Gallaway, J. W.; Yadav, G. G.; Ramirez, R.; Nyce, M.; Banerjee, S.; Chen-Wiegart, Y. C. K.; Wang, J.; D’Ambrose, M. J.; Kolhekar, S.; Huang, J. C.; Wei, X., “Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage.” Chemistry of Materials, 2017, 29 (11), 4819- 4832.

A modern literature survey of zinc alkaline anodes with levelized performance metrics and experimental assessment of leading formulations.

24. Yadav, G. G.; Wei, X.; Huang, J.; Gallaway, J. W.; Turney, D. E.; Nyce, M.; Secor, J.; Banerjee, S., “A conversion-based highly energy dense Cu2+ intercalated Bi-birnessite/Zn alkaline battery.Journal of Materials Chemistry A, 2017, (30), 15845-15854.

23. Yadav, G. G.; Gallaway, J. W.; Turney, D. E.; Nyce, M.; Huang, J.; Wei, X.; Banerjee, S., “Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries.” Nature Communications, 2017, 8, 14424.

A deep cycling MnO2 cathode at high areal capacity.


22. Gallaway, J. W.; Hertzberg, B. J.; Zhong, Z.; Croft, M.; Turney, D. E.; Yadav, G. G.; Steingart, D. A.; Erdonmez, C. K.; Banerjee, S., “Operando identification of the point of [Mn2]O4 spinel formation during gamma-MnO2 discharge within batteries.” Journal of Power Sources, 2016, 321, 135-142.

The spinels ZnMn2O4 (hetaerolite) and Mn3O4 (hausmannite) form at the same state of discharge in alkaline MnO2 cathodes.


20. Gallaway, J. W.; Menard, M.; Hertzberg, B.; Zhong, Z.; Croft, M.; Sviridov, L. A.; Turney, D. E.; Banerjee, S.; Steingart, D. A.; Erdonmez, C. K., “Hetaerolite Profiles in Alkaline Batteries Measured by High Energy EDXRD.” Journal of the Electrochemical Society, 2015, 162 (1), A162-A168.

An in situ study of the series of discharged materials produced in cylindrical alkaline Zn-MnO2 batteries at various rates.

19. Bhadra, S.; Hertzberg, B. J.; Hsieh, A. G.; Croft, M.; Gallaway, J. W.; Van Tassell, B. J.; Chamoun, M.; Erdonmez, C.; Zhong, Z.; Sholklapper, T.; Steingart, D. A., “The relationship between coefficient of restitution and state of charge of zinc alkaline primary LR6 batteries.” Journal of Materials Chemistry A, 2015, (18), 9395-9400. 


18. Gallaway, J. W.; Erdonmez, C. K.; Zhong, Z.; Croft, M.; Sviridov, L. A.; Sholklapper, T. Z.; Turney, D. E.; Banerjee, S.; Steingart, D. A., “Real-time materials evolution visualized within intact cycling alkaline batteries.” Journal of Materials Chemistry A, 2014, (8), 2757-2764.

Localized MnO2 states-of-charge calculated from EDXRD of a recharging D cell battery. Our first work on operando EDXRD.

17. Gallaway, J. W.; Gaikwad, A. M.; Hertzberg, B.; Erdonmez, C. K.; Chen-Wiegart, Y. C. K.; Sviridov, L. A.; Evans-Lutterodt, K.; Wang, J.; Banerjee, S.; Steingart, D. A., “An In Situ Synchrotron Study of Zinc Anode Planarization by a Bismuth Additive.” Journal of the Electrochemical Society, 2014, 161 (3), A275-A284.

Study of a Bi additive that greatly reduces dendrites for Zn anodes deposited from a flowing electrolyte.

16. Turney, D. E.; Shmukler, M.; Galloway, K.; Klein, M.; Ito, Y.; Sholklapper, T.; Gallaway, J. W.; Nyce, M.; Banerjee, S., “Development and testing of an economic grid-scale flow-assisted zinc/nickel-hydroxide alkaline battery.” Journal of Power Sources, 2014, 264, 49-58.

A 25 kWh flow-assisted Zn battery.


15. Gaikwad, A. M.; Gallaway, J. W.; Desai, D.; Steingart, D. A., “Electrochemical-Mechanical Analysis of Printed Silver Electrodes in a Microfluidic Device.” Journal of the Electrochemical Society, 2011, 158 (2), A154-A162.


14. Gallaway, J. W.; Desai, D.; Gaikwad, A.; Corredor, C.; Banerjee, S.; Steingart, D., “A Lateral Microfluidic Cell for Imaging Electrodeposited Zinc near the Shorting Condition.” Journal of the Electrochemical Society, 2010, 157 (12), A1279-A1286.

A study of Zn dendrites deposited from flowing alkaline electrolyte.


13. von Gutfeld, R. J.; Gallaway, J. W.; West, A. C., “In Situ Immersion Plating of Copper and Nickel on Aluminum Using Laser Pulses for Oxide Removal.” Journal of the Electrochemical Society, 2009, 156 (12), D564-D569.

12. Gallaway, J. W.; Willey, M. J.; West, A. C., “Copper Filling of 100 nm Trenches Using PEG, PPG, and a Triblock Copolymer as Plating Suppressors.” Journal of the Electrochemical Society, 2009, 156 (8), D287-D295.

11. Gallaway, J. W.; West, A. C., “The effect of acid on superconformal filling in 100 nm trenches.” Journal of Vacuum Science & Technology B, 2009, 27 (5), 2200-2205.

10. Hudak, N. S.; Gallaway, J. W.; Barton, S. C., “Formation of mediated biocatalytic cathodes by electrodeposition of a redox polymer and laccase.” Journal of Electroanalytical Chemistry, 2009, 629 (1-2), 57-62.

9. Gallaway, J. W.; Willey, M. J.; West, A. C., “Acceleration Kinetics of PEG, PPG, and a Triblock Copolymer by SPS during Copper Electroplating.” Journal of the Electrochemical Society, 2009, 156 (4), D146-D154.

8. Hudak, N. S.; Gallaway, J. W.; Barton, S. C., “Mediated Biocatalytic Cathodes Operating on Gas- Phase Air and Oxygen in Fuel Cells.” Journal of the Electrochemical Society, 2009, 156 (1), B9- B15.

7. Gallaway, J. W.; Barton, S. A. C., “Effect of redox polymer synthesis on the performance of a mediated laccase oxygen cathode.” Journal of Electroanalytical Chemistry, 2009, 626 (1-2), 149- 155.

An osmium-mediated laccase cathode producing remarkably high current.


6. Wheeldon, I. R.; Gallaway, J. W.; Barton, S. C.; Banta, S., “Bioelectrocatalytic hydrogels from electron-conducting metallopolypeptides coassembled with bifunctional enzymatic building blocks.” Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (40), 15275-15280.

5. Gallaway, J. W.; West, A. C., “PEG, PPG, and their triblock copolymers as suppressors in copper electroplating.” Journal of the Electrochemical Society, 2008, 155 (10), D632-D639.

Triblock copolymers used in Cu electroplating for semiconductor fabrication.

4. Gallaway, J. W.; Barton, S. A. C., “Kinetics of redox polymer-mediated enzyme electrodes.” Journal of the American Chemical Society, 2008, 130 (26), 8527-8536.

A series of Os redox polymers used as mediators for laccase cathodes. My PhD dissertation work.

3. Gallaway, J. W.; Wheeldon, I.; Rincon, R.; Atanassov, P.; Banta, S.; Barton, S. C., “Oxygen- reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor.” Biosensors & Bioelectronics, 2008, 23 (8), 1229-1235.


2. Barton, S. C.; Deng, W.; Gallaway, J. W.; Levendovsky, S.; Olson, T.; Atanassov, P.; Sorkin, M.; Kaufman, A.; Gibbard, H. F., “Mixed-feed direct methanol fuel cell: Materials and design solutions.” ECS Transactions, 2006, (6), 315-322.


1. Barton, S. C.; Gallaway, J. W.; Atanassov, P., “Enzymatic biofuel cells for Implantable and microscale devices.” Chemical Reviews, 2004, 104 (10), 4867-4886.

A review on enzymatic biofuel cells. I wrote the section on Os coordination compounds.

Recent Posts

  1. Cylindrical alkaline batteries: Pulsed vs. continuous discharge Comments Off on Cylindrical alkaline batteries: Pulsed vs. continuous discharge
  2. Space-filling shapes in composite solid electrolyte (CSE) batteries Comments Off on Space-filling shapes in composite solid electrolyte (CSE) batteries
  3. Great photo of Bebi Comments Off on Great photo of Bebi
  4. NSF CAREER Award Comments Off on NSF CAREER Award