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Electrochemical reactors differ from chemical reactors by the importance of

MODELING AND REACTOR SIMULATION

DOUGLAS N. BENNION

the distribution of electrical potential and the effect of electric potential

variations on mass transfer and heterogeneous reaction rates. Basic principles
and examples for including these effects in reactor design will be considered.

| There are four scientific areas which form

the basis for most chemical engineering
modeling and reactor simulations: thermo-
dynamics, transport  phenomena, chemical
kinetics, and system analysis. In the field
of electrochemical reactor simulation the
same principles apply with the addition of
electrical potential as a thermodynamic

variable and its gradient as a transport
qr1v1ng force. Electrochemistry typically
involves an electron transfer step at an
interface between an electronically
conducting phase and an jonically conducting
phase. Electrons must not occur in a free or
independently transportable condition in the
fonically conducting phase.

Electronically

) conducting phases are
typ?ca11y solid metals or semiconductors.
Ign1ca11y conducting phases are typically
liquids called electrolytes or electrolytic
solutions. Notable  exceptions exis..
ansjdering the more typical cases, solid-
liquid  reacting  interfaces suggest a
comparison to heterogeneous catalysis. There
Is considerable similarity. A major
difference 1is the requirement for all the

solid, electronic phase surface area which is
aictive to have a continuous connection to an
outside electrical circuit or to another
operating electrode in the case of series
tonnected cells. The potential distribution
limits the useful size or thickness of
extended surface area electrodes. If
tlectrodes are too large and/or incorrectly
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shaged, there will be 1large nonproductive
regions. These complexities make the typical
overall reaction rate per unit volume of

electrochemical reactors orders of magnitude

below typical heterogeneous, catalytic
reactors. _ Consequently, electrochemical
processing is often limited due to high

capital cost.

A primary objective of electrochemical
reactor design is to increase the reaction
rate per unit volume while keeping operating
costs at a minimum, that is, achieving high
current  densities with low electrical
potential Tosses. The Tosses are divided
into three categories: resistance. or IR
losses, potential Tlosses associated with
concentration  variations, and  potential
logses associated with driving the surface
reaction at finite rates.

Minimizing surface potential Tosses is
1arge1y a matter of heterogeneous catalysis
which is a rather specialized field not yet
well established or described by fundamental
laws. The designer is often caught between

raising temperatures to increase chemical
reaction rate constants while fighting
corrosion problems associated with higher
temperatures. If adequate catalysts are not
ava11ab1e, an alternative is to increase the
specific area of the electrode. Getting
adequate mass transfer to and from the

extended surface area is often the critical
problem over which the designer has control.
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Catalyst research is generally long
term, costly, and uncertain. The use of high
surface area electrodes with emphasis on
designing for optimum mass transfer is
usually the short term objective for an
electrochemical design engineer.

THERMODYNAMICS
The electrical state of a phase is
defined by its electrical potential.

Electrical potentials are always relative to

some reference potential. There 1is no
working definition which can define an
absolute potential. Thus, it 1is always
necessary to refer to differences in

potential between phases. Voltage measuring
devices measure the difference in electrical
potential between two identical, electroni-
cally conducting phases, typically copper.
The electronic potential is related to the
chemical potential of the electrons in the
respective phases by the expression

(2) (1)
u

(Mg - We-
=& = (1)

21 T 9
where ¢, and ¢, are the electrical ?Q}entials
e

of phase 1 and 2 respectively, u is the
c?gwical potential of electrons in phase 2,
He-

is the chemical potential of electrons
in phase 1, and F is Faraday's constant 96487
coulombs per equivalent.

There is no known method for measuring
directly the electrical potential in an
electrolyte. A1l that can be done 1is to
place electronic conductors, a metal or
semiconductor, into the solution and measure
the potential difference between the
electronic conductors. Such devices are
called reference electrodes. No current or
at least a negligibily small current must be
allowed to pass across the interface between
the electronic conductor of the reference
electrode and the electrolyte. nNewman
(1973a), following Guggenheim to whom Newman
refers, has discussed the principle of local
equilibrium which relates the reference
electrode electronic  potential to the
chemical potential of ions in the solution.
The result is a working definition of the
electrical state of the electrolyte phase.
The reference electrode must "be reversible"
to some ion in the solution. A calomel cell

in a chloride solution is the classic
example. It is reversible to the chloride
ion.

™
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Hg + C1— = I Hg,C1, + e~ (2)

The principle of local equilibrium means the
following relation exists:

_1
Mg Y Eo— /2“H92012 g (3

By inserting two reference electrodes in an
electrolyte, the potential difference between
the two reference electrodes relates the
chemical potential between the chloride ions
at the two locations.

(1) (2} .

g (1) _ (2) (1) , (2)
o e A

He— ~ He— 7 Hyg HHg

(1) (2)
N uHQZC]z B uH92C12 i

Since the chemical potential of Hg and H92012
will normally be the same at the two
locations, Equation (4) can be written:

pé%l_' ué%l = Fle'?) - ot (5)

T?f) measured potential difference, ¢(2)
o'*!, reflects changes 1in the electrical
state between the two locations plus changes
in concentration or other aspects of the
local environment. Concentration and
electrical contributions can not be uniquely
separated and it is not necessary to do so.
It is often useful, however, to separate the
potential difference into a potential
difference identified primarily with the
change in electrical state or flow of
electrical current sap, and the difference
arising primarily from the variation in
concentration, n..

o2 _ Q(l) = hegg * ng (6)

The potential difference identified with
current flow or resistance overpotential is
defined as the line integral between the two
reference electrodes of the current density,
i, divided by an average conductivity between
the two electrodes, K-

Mg =S, e @ (7)

| The surface overpotential
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The concentration overpotential
1eft over.

is what is

A

- deqp (8)

Newman (1973b) has shown a general form for
ne. which 1is rather complex. For many cases
tﬁe expression reduces to the simpler Nernst
egquation which, as applied to the calomel
reference electrodes in a chloride media,

becomes
(1)
C
_ RT Cl—
Ne 'F‘ln—(ﬂ (9)

ELECTROCHEMICAL KINETICS

consider a
Let ®p be the hydrogen
electrode potential and ¢. be the oxygen
electrode potential, see Figure 1 for a
schematic sketch of the cell. The cell
potential, U, is ¢, - o A reference
electrode 1is placed just outside the double
layer of each working electrode. The
reference electrode adjacent to the. hydrogen
electrode, ¢pp» is @ reversible hydrogen
g]ectrode across which no current passes. It
is bathed 1in the same electrolyte as the
surface of the working hydrogen electrode.
Current is passing across the surface of
working electrodes. The reference electrode

As an example,

hydro
oxygen fuel cell. S irosen

adjaceqt to the oxygen electrode, dcps IS a
rgvers1b1e oxygen electrode. The potential
difference between the two reference

electrodes, opp - @pc, 1S the sum of the
hydrogen-oxygen open circuit potential, U°,
plus the resistance overpotential, Adpps Plus
the poncentration overpotential, n.. Often
ne 1s separated into an anodic plus a
cathodic contribution associated with
concentration variations at each electrode.
at the hydrogen
electrode, ngps is defined as bp - opp- The
surface overpotential at the oxygen
etectrode, ngc, 1s defined as oc - ®pe-

A required 1input for electrochemical
reactor simulation modeling is a quantitative
gxpression for the transfer current density,
J, as a function of the appropriate surface
overpotential and local electrolyte
concentration. There is no unique functional
form and there are no easy rules of getting
the correct function. Unfortunately, the
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electrochemists give us only some rough
guidelines. Often, an expression of the

following form is found to work.

;$f.ns o F ns‘
oo RT
j=1,1le - e (10)
Here 1, ags and o, are kinetic parameters.
The gxchange current density, 10, is a
function  of the local electrolyte
concentration, often of the form
i = 12 (6 /60 (11)
0 o “e've

where i9 is the exchange current density at
the reference concentration Cg and y is some
constant between 0 and 2. The kinetic
parameter values can change markedly with

changes in the surface condition of the
e1ectrode. The true functional form for
Equation (10) and values for the governing

parameters must normally be determined using
extensive experimental tests of current
voltage behavior under carefully controlled
conditions of electrolyte composition and
electrode surface conditions.

TRANSPORT

) The basic equations to be solved for a
typ1ga] electrochemical reactor are the
species conservation equations.

BCi

v VlN'i + Ri (12)

Here C; is the concentration of species i in
moles of species i per unit volume of the
§oTht1on phase. N; 1is the flux of species i
in moles of i per unit area per unit time. R
is the rate of production of species i in
moles of i per unit volume. The fundamental
laws 9f transport are used to express N; as a
function of appropriate driving forces.
Newman (1973c) teaches us two forms for N..
One is the dilute solution theory. !

(13)

Ni = _Uivci = uiCiFZi Ve + Civ

This equation 1is well explained by Newman
(@973c} and shows how flux depends on a
d!ffu510n contribution, D, vCi, on . a
migration or electric field contribution,

uiCiFZi Ve, and on a convective flow
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contribution, Cyv. This equation has been
very useful over the years and is
satisfactory for many purposes.

For situations involving several species
at high concentration, Equation (13) does not
contain sufficient cross terms such as the
transport of A due to a movement of species
B. For example, in membranes thg trgnsport
of neutral water due to an electric field is
caused by movement of hydrated ions. Such
effects are better accounted for using the so
called concentrated transport theory based on
the Stefan Maxwell equations for transport.

= BK.a (vi-S=vn) (13)

d. :
=i Jig = =

A complete discussion of this equation
is beyond the scope of this paper and readers
are referred to Chapter 12 of the previously
referenced text by Newman or to Hirschfelder
et al. (1954) for a more complete discussion
of this equation. A key aspect of Equation
(13) is to recognize that for n species in a

solution there will be n-1 independent
species flux equations, n-1 independent
driving forces, and n(n-1)/2 independent

diffusion type transport parameters.
THE SYSTEM

The basic design equations can be placed
in six categories.

o Flux equations

Ny = -Dyvey - z;FusCi ve, + Cov (12)

1
or

4y = ziKij(!j - ¥;) where N = C,v. (13)

® Electroneutrality equation

£;2;C5 =0 (14)
o Current equation
i=F sziNi (15)
® Species conservation equations
aeC,i s
o Overall continuity equation
v . !_’—' 0 (16)

e Equations of motion

pgE = -V P +uV?!*‘pﬂ (17)

ol o
d‘,]<

It must be remembered that these are
classes of equations and often the equations
as written must be replaced by alternate

equations better suited for a particular
situation. The various choices of flux
equations has been mentioned. The

electroneutrality equation is usually valid,
but in the double layer, at the junction of
two semiconductors, or in materials more 1ike
dielectrics than electrolytes it may be
necessary to replace Equation (14) by
Poisson's equation. The current equation is
much like a definition and always true.

The most important of the equations are
the species conservation equations. For most
electrochemical engineering problems, these
equations apply only to the solution phase.
In a porous electrode, a correction must be
made for volume occupied by the solid. An ¢,
the volume fraction occupied by the Tliquid
phase, is included in Equation (11) to
account for the exclusion of liquid by the
presence of the solid phase.

It is an important procedure in modeling
to begin with the simplest model possible and
build. A simple model often has analytic
solutions which provide early, useful insight
into the problem. A simple computer code can
usually be easily written and comparison made
between numerical and analytic solutions
which 1is usually very instructive. As the
model is made more complex, analytical
solutions become impossible. The gradual
adding of new physical processes and
mathematical equations allows needed insight
into both the physical interrelations of the
various  simultaneous processes and the
mathematical structure of the problem. It
also allows stepwise building and debugging
of the code in an ordered manner.

If possible, a single conservation
equation and one variable should be the
beginning of a code. Consider the system H20
- KOH - KpZn(OH)4 in a solid Zn plus Zho
matrix. If ¢ is assumed constant, v zero,
and no pressure variations, there are three
independent conservation equations, that is,
there are four species and the number of
independent species conservation equations is
n-1. The sum of the charged species
conservation equations yields the charge
conservation equation
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|

|
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V. ig=aj (18)

If concentrations are uniform, Equation (@8)
js the only species conservation equation
needed and solution potential, %y, the on!y
variable. The transfer current density, j,
ijs related to the solution potential by an
appropriate kinetic equation such as

aaF (@1— ¢2) uCF (@1 - ¢2)

j = ‘io e - eRT_ (9)

In the beginning Tet §;, potential of the
metal phase, be constant and zero. By
combining Equations (12) and (15), one gets
ohm's law if concentrations are uniform.

do,

Combining Equations (18), (9) and (19) yields

d aF e, afe,
- eRT— eRT_

dx

d@z

0
dx aty (20)

K

The solution to these equations gives
¢p, J, and i, as functions of x for given
applied potentials. One can then add a
species conservation equation for OH  and
Cop~ a@s a variable. Equation (18) must be
monified to account for variations in CO?-
along with Cyy- dependence of i,. A suitable
expression must be realized for R H™ e An
example might be from Faraday's Law

-2aj

Once Coy- variations with x and agpl?ed
potential are examined, the Zn(OH)4 ion

species conservation equation can be added
and CZn(OH) = included as_ a var1ab1q. An
expression 4 for RZn(0H)4 might include
Zn(OH),~ production based on Faraday's law,
alj/2F, and its removal from solution based
on laws which describg " nucleation and
precipitation, kja,(Csy - C3%%).

At this point one has ¢ 5, C%H"
CZn(0H) ,=2 iy, and j as functions og position
anﬂ apﬁQied potential. Water concentration,
Co, is fixed once the ion concentrations are
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known. When that level of the model is fully
tested and understood, one can add ¢ and v as
variables.

The continuity equation is the sum of
all four  species continuity equations
converted to their mass rather than molar
forms.  When one considers the liquid and
solid phases as a superimposed continuum as
taught by Newman and Tobias (1962), the
continuity equation becomes two equations

interrelating the continuity of 1liquid and
solid phases.

dE _

a—t-V .V (22)
and

3 - 5 S.V.R. (23)

at - £5%5'3R

solid

In Equation (23) the summation is over all
solid species; S; is the stoichiometric
coefficient which s negative if species j is
produced. The V. is the partial molar volume
of species j and"R; is the same reaction rate
per unit volume aS defined for the regular
solution species conservation equations.
Although changes in ¢ must give rise to
changes in v as shown by Equation (22), it is
mathematically possible to add Equation (23)
and not Equation (22). The physical
significance may be suspect, but adding the
equations one at a time is highly
recommended.

The addition of Equations (22) and (23)
is a major step mathematically since it
introduces time as a variable. As new
variables are added, previous equations must
be _updated to include effects of new
varfables. It is important to recognize that
these effects can be added one step at a
time, and should be.

Once the one dimensional problem is
satisfactorily understood, a second spatial
dimension can’ be added to the model.
Detailed math models in two spatial
dimensions have not been common. The cost of
computing has been high and the skills to do
it not widely known. Improved numerical
techniques and Tlower computing costs can .be
expected to make more complete and
descriptive models popular ~and useful.
Another useful addition to many models is a
or possibly several competing, parasitic
processes at one electrode. Hydrogen
evolution plus zinc reactions at a negative
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battery electrode or oxygen evolution at a
nickel oxide electrode are examples. The
surface overpotential driving forces are
handled by multiple reference electrodes.
For the nickel oxide electrode, a reversible
nickel oxide reference electrode defines ng
for the nickel valence change reaction and a
reversible oxygen reference defines ng for
the oxygen evolution reaction. Such models
can then predict current efficiency for a
given reaction as a function of time and/or
position depending on the completeness of the
equations.

The equations of motion are needed only
if pressure variations and their effect on
velocity are needed as is the case for forced
convection, flow through or flow by
electrodes. Often the flow patterns are
determined experimentally or solved for
independently of the previously discussed
equations and velocity is simply inserted
into the previous equations as a known
function of position, independent of time.
It is possible and reasonable to include some
form of the equations of motion and add
pressure as a variable and solve all of the
equations together.

NUMERICAL METHODS

Many numerical techniques can be used to
solve the equations. A technique with which
the author has had considerable recent
success will be briefly described. The
procedure is based on Newman's (1973d)
BAND(J) subroutine for matrix inversion.
BAND(J) will invert any set of tridiagonal
matrixes. As Newman has shown us, any set of
Tinear ordinary differential equations can be
put in the form of finite difference
equations which form a set of tridiagonal
matrixes. Since most equations are
nonlinear, it is necessary to put the
equations in linear form and iterate over the
nonlinearities. Uften the order is to
linearize and then put in finite difference
form.  If the equations are put in finite
difference form first, it is then possible to
use a simple, general Fortran code to handle
all  of the Tlinearization and details
associated with calling BAND(J).  Although
linearization and setting up the logic for
calling BAND(J) is straightforward, it can be
time consuming and formidable to beginners.
The standardized procedures used in the
general code being described here causes some
lack of optimization and resulting programs
take somewhat 1longer to run than a code
specifically written for a specific
problem. For a one dimensional problem or

™
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one dimension plus time, the increase in
computer run time may be 10 to 50%. A
modified form of the procedure can be used
for two dimensional problems which are second
order in both directions (eliptic problems),
but the time penalty may be large compared te
other methods. More efficient approaches
which retain coding simplicity are still
being worked on for the two dimensional
eliptic problems which are faster in terms of
computer run time.

Although computer run time may be
somewhat longer to solve a particular set of
equations, the time to write the code and
debug the program is much less than for other
approaches. Experiences with students and
professors at BYU indicates that the coding,
debugging, and revisions can be done in one
fifth the time compared to more usual
techniques. One now has the option of
trading machine time for human labor. In the
great tradition of the industrial revolution,
the trade has wusually been profitable.
Students have named the subroutine DIFEQ. To
use the technique all ‘that one must do is
write the differential equations in finite
difference form and code them in a subroutine
known as FUNCT(J). DIFEQ calls FUNCT(J) and
does all the work of solving the equations by
linearizing them and iterating on any
nonlinearities.

Any differential equation can be put in
finite difference form (see any text on
numerical methods applied to differential
equations). Newman outlines the procedure in
the Appendix of his book. The result is an
equation of the form
N N
r A(I,K)*C(K,J-1) + 5 B(I,K)*C(K,J)
K=1 K=1

|
+ Y U(L,K%C(K,a+1) - 6(1) = 0 (24)

K=1

The subscript I refers to the number of the
equation of which there are N. The subscript:
K refers to the particular dependent variable
C(K,J-1). The subscript J refers to the mesh
point number. If the equation is linear, the
functions represented by A, B, D, and G are
constants or functions only of the dependent
variable such as position x and or time t.
Thus, for a given J (that is Tlocation in
space and/or time 1is fixed) A, B, D, and G
are real numbers.
feeding it the numerical values of A, B, D,
and G for each value of J. Although it
appears simple once the concept is fully

Newman's BAND(J) works by

!

|
|
l
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grasped, getting the concept and the time to
set up the calculation procedures on a
computer has been sufficiently formidable
that, based on the author's experience, few
students would try it. By using DIFEQ, the
necessity of gaining a complete grasp of
BAND(J) initially is eliminated and the labor
of coding reduced. It is hoped that the
principles behind BANU(J) may be learned and
appreciated more easily through the use of
DIFEQ while allowing a worker to more quickly
actually begin to solve important problems.

If the equations are nonlinear, A, B, U,
and G will be functions of one or more of the
independent variables C(K,d). For
simplicity, the function defined by Equation
(24) will be called F(I).

N

F(I) =3 {A(I,K)*C(K,J-l) + B(I,K)*C(K,J)
K=1

+ DILKI*C(K,+1)] - 6(1). (25)

If one estimates a set of C(K,J) as a trial
solution, F(I) can be represented by a Taylor
series keeping only the first order terms.

0
F(I) = FD°+ 8 ¢ ( aF (1) ) *[C(K,M)
K=1 p=g-1 \3CTK,H)
J
J+1
- ¢%(k,M)] (26)

The index K goes from one to N, and M takes
on the three values J-1, J, and J+l. By
comparing Equations (26) and (25), it can be
seen that

FiD -\

0
B(I,K) =(5%%é%}y) (28)

aF(I) )0 (29)

oLl (a—am

o
6(1) = -F(1)° +KzM(g—§§ﬁy) *C(K,M)©(30)
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The program DIFEQ takes all the partial
derivates numerically by calling the sub-
routine FUNCT(J) for various values of the
arguments.

The programmer must write a subroutine
FUNCT(J) which contains the N equations in
finite difference form for all interior
points. Appropriate boundary condition
equations must be supplied at the boundaries
at J equal one and J equal NJ. Appropriate
input and output subroutines must also be
supplied. The simplest form of the porous
electrode equations is the single equation

F(1) = aj - vei, (18)

A simple code using DIFEQ and solving this
equation 1is given in the Appendix. The
result yields the so called secondary current
distribution applicable for a simple redox
surface overpotential expression and no
concentration variations. Uther equations
can easily be added.

CLOSURE.

What can a model of an electrochemical
system do for the design engineer? Probably
the greatest help is being able to understand
what is going on and how various processes
interrelate allowing one to gain insight into
a system and interpret behavior with a
minimum of practical, expensive hands-on
experience. It can provide a picture of
concentration, potential, porosity, current
density, reaction rate, velocity, and
temperature as functions of position and time
for various design configurations and
operating conditions. By using a complete
model, it may be possible to predict costs
and then use the model to optimize design
configurations and operating conditions.
Such a model might also be used as part of an
automatic control Toop to allow computers and
automatic control equipment to improve the

response and optimization of the control
function.
Unfortunately, the state of the art in

math modeling of electrochemical systems has
rarely reached to the lofty objectives just
described. Hopefully we are moving toward
the ideal. In the meantime, the model can be
a partial aid to design and operating
engineers in accomplishing their respective
assignments.
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APPENDIX

The first routine 1listed is the main
program nicknamed DIFEQ. It takes all the
partial derivatives necessary for any
problem, defines A, B, D, and G's for each
value of J and calls BAND(J). It tests each
iteration and continues iterating until
convergance to one part in 10,000 at all
points is achieved. The procedure has been

tested on about 30 problems by about 15
different students. It generally works
well. Occasionally the internal value of CU

must be changed from 1.0001 to 1.001 or
1.00001 for a particular variable. ¥ «a
function is highly sensitive to a particular
variable then CU equal 1.00001 may work
better. If a function is very insensitive to
a variable, then CU equal 1.001 may be
selected. Values of CU can be specifically
adjusted for each function F(I) and each
variable C(K,J).  Such tailor making adds
considerable complexity, however, and so far
CU equal 1.0001 has worked well for many
cases. There is a procedure to prevent
dividing by zero when the variable is zero.
It probably needs improvement. The
subroutine DIFEQ is Tisted at the end of this
Appendix.

The subroutine DIFEQ is general and can
be used for solving up to 10 simultaneous
equations with an equal number of unknowns.
A1l that is needed is to write the equations
in finite difference form in a subroutine
FUNCT(J). More equations can be solved if
the dimensions in the common statement are
increased.

An example of a single equation for
FUNCT(J) is given right after the subroutine

AIChE SYMPOSIUM SERIES

DIFEQ. The subroutine is for Equation (18)
using Equations (9) and (19) to relate i, and
J to the potential ¢5. The dependent
variable is ¢,.

The boundary conditions applied at J =1
and J = NJ set i, equal zero at J = 1 andj 2
equal some given value, CNJ, at J = NJ. In
addition, the boundary conditions include
reaction rate aj between x = 0 and x = H/2 at
J = 1 and between x = H*x - h/2 and x = H*x
at J = NJ.

Besides the subroutine FUNCT(J), the
programmer must provide a main or calling
routine to provide parameters needed by
FUNCT(J) and to print out the answer. Such
parameters must be included in the COMMON
statement. The calling routine normally
includes an 1initialization procedure which
provides the initial estimates for the
variable C(K,J). An example calling routine
is Tisted just behind FUNCT(J). A sample
output is Tisted Jjust after the calling
routine. For the simple problem given, an
analytic solution 1is possible if a linear
form of the redox expression is used. At low
applied potential (the 1linear region), the
two solutions agree to within %. Better
agreement is achieved by using more mesh
points. To these routines must be added the
subroutine BAND(J) and MATINV(N,M,DETERM)
which were written by Newman (1973d).

As presented so far, the procedure is
good only for ordinary differential
equations. If a second dimension involves
only first derivatives with respect to the
second independent variable such as time,
only prior problem solutions are needed. The
programmer can code to simply march forward
in the second independent variable. The
DIFEQ-BAND(J) procedure has been extensively
tested for this application and works well.
Programming labor is much less than alternate
procedures and run time increases only
modestly, 10 to 50%.

If the second dimension is second order
in the independent variable, some sort of
relaxation procedure is needed. The ADI
(alternating direction implicit) method has
been tested in a very preliminary way. The
coding time seems greatly reduced compared to
alternate techniques. But the computer run
time may be too 1Tlong compared to other
techniques to justify its use. Further tests
of the technique are under way.

|
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C GENERALIZED CALLING SUBROUTINE FOR BAND(J) TO SOLVE DIFFERENTIAL
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C EQUATIONS TAKING PARTIAL DERIVATIVES NUMERICALLY

Cc ITS

SHORT NAME IS DIFEQ

SUBROUTINE DIFEQ

IMPLICIT REAL#8(A-H, 0-2)

DIMENSION AA(10,10),8UM(10),COLD(10, 101)

COMMON A(10, 10),B(10,10),C(10, 101),D(10, 21), 6(10), X(10, 10),
1Y(10, 10), N, NJ, ITPRT, F(10), ITCNT,

2H, THICK, CNJ, EXCUR, ALPHA, ALPHC, APUV, EFORT, CAPPA

10

15

20

29

30
i

i

Cu=1. 0001
CD=2. 0-CU
ITCNT=0
CONTINUE
DO 15 K=1,N
DO 15 J=1,NJ
COLD (K, J)=C (K, J)
CONTINUE
J=0
IF(ITCNT. 6T. 20)G0 TO 30
ITCNT=ITCNT+1
CONTINUE
J=Jd+1
L=u-3
DO 25 I=1,N
SUM(I)=0.0
CONTINUE
IF(J. EQ. 1) MM=3
IF(J. @T. 1. AND. J. LT. NJ) MM=2
IF(J. EQ. NJ) MM=1
DO 35 M=MM, MM+2
DO 35 K=1,N
SAVEC=C (K, L+M)
IF (DABS(SAVEC).LT. 1.0D-14) C(K,L+M)=1. OD-14
C(K, L+M)=C (K, L+M) #CU
CALL FUNCT(J)
DO 30 I=1,N
AAC(I, K)=F(I)
CONTINUE
C(K, L+M)=SAVEC
IF (DABS(SAVEC).LT.1.0D-14) C(K,L+M)=1, OD-14
C(K, L+M)=C (K, L+M) #CD =
CALL FUNCT (W)

C (K, L+M)=SAVEC
IF (DABS(SAVEC).LT.1.0D-14) C(K,L+M)=1. 0D-14
DO 35 I=1,N
AACT, K)=(AACT, K)=F(I))/((CU-CD)#C(K, L+M))
C (K, L+M)=8AVEC

SUM(I)=SUM(I)+AA(I, K)#C (K, L+M)
IF (L+M.EQ. J-2) Y(I,K)=AA(I,K)
IF (L+M.EQ. J-1) A(I,K)=AA(I,K)
IF (L+M.EQ. J) B(I,K)=AA(I,K)

IF (L+M.EQ. J+1) D(I,K)=AA(I, K)
IF (L+M. EQ. J+2) X(I,K)=AA(I,K)

33
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35 CONTINUE
CALL FUNCT(J)
DO 40 1=1,N
C(I)=—F(I)+SUM(I)
40 CONTINUE
CALL BAND(J)
IF (J.LT.NJ) GO TO 20
DO 45 K=1,N
DO 45 J=1,NJ
IF (DABS(C(K,J)).LT.1.0D-14)G0 TO 45

IF (DABS((C(K»J)—CULD(K:d))/C(K:J)).GT.1.0D—4) G0 TO 10
45 CONTINUE

50 RETURN
END

SUBROUTINE FUNCT(J)

IMPLICIT REAL#8(A~H, 0-Z)

COMMON A(IO;IO).B(IO.IO):C(IO-101).D(10:21):G(10):X(lO.10),
IY(IO;10).N-NJ:ITPRT‘F(10):ITCNT,

2HoTHICK:CNJ.EXCUR.ALPHA.ALPHC;APUV.EFDRT.CAPPA
IF(J. EQ. 1)THEN

CURZUP=—CAPPA*(C(1:2)-0(1.1))/H
CQTR“(S.O*C(I.1)+4.0*C(1:2)*C(1o3))/8.0
TRCUR=EXCUR*(DEXP(*EFDRT*ALPHA*CQTR)—DEXP(EFDRT*ALPHC*CGTR))
F(l)BAPUV*TRCUR*CUREUP*2.O/H

ELSEIF (J. EQG. NJ) THEN
CUR2UP=—CAPPA*(3.0*CNJ—4.0*C(lsNJ*I)*C(I,NJ-Q))/E.O/H
CURZDN=-CAPPA*(CNJ—C(1;NJ—l))/H
CQTR=(5.0*CNJ+4.0*C(i,NJ—I)*C(l»NJ—Z))/B.O
TRCUR=EXCUR*(DEXP(*EFORT*ALPHA*CQTR)—DEXP(EFDRT*ALPHC*CGTR))

F(1)=APUV*TRCUR—(CURQUP—CURQDN)*E.O/H
ELSE

CUR?UPﬂ—CAPPA*(C(I.d+1)—C(IaJ))/H
CURZDN=—CAPPA*(C(1;J)—C(l:d—l))/H
TRCUR=EXCUR*(DEXP(—EFDRT*ALPHA*C(1,J))

F(l)=APUV*TRCUR-(CURQUP*CURQDN)/H
ENDIF

RETURN
END

c MAIN PROGRAM

IMPLICIT REAL#8(A-H, 0-7)

DIMENSION CUR(101), TRCUR(101)

COMMON A(lOolO):B(IO:lO):C(lO:101):D(10a21),
IG(IO)JX(IO,IO):Y(IO.10):N,NdaITPRT.F(IO):ITCNT,
QH:THICK;CNJ:EXCUR:ALPHA.ALPHC:APUV:EFORT:CAPPA

OPEN (UNIT=18,FILE=’input':STATUS='Dld’)

OPEN (UNIT=19:FILE=’output’.STATUS='new')
REWIND 18

REWIND 19
5 READ(IB.*,END=999)N:NJ:ITPRT;THICK:CNJ,EXCUR:
1ALPHA»ALPHC:APUV;CAPPA
EFORT=38. 944
H=THICK/FLOAT (NJ-1)
DO 10 JU=1,NJ

C(l:J)=CNJ*DFLOAT(J-1)/DFLDAT(NJ“I)

AIChE SYMPOSIUM SERIES

—DEXP (EFORT#ALPHC#C (1, J)))

20

200

201

202
999

foos
==
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10 CONTINUE
CALL DIFEQ,

DO 20 J=1, NJ-1

CUR(J)=~CAPPA®(C(1, J+1)=C(1, J))/H

TRCUR (J)=EXCUR#* (DEXP (-EFORT#ALPHA#C (1, J))

1-DEXP (EFORT#ALPHC#C(1, J)))

INUE

gg:INd)n-CAPPA*(3.0*C(I'NJ)—4.0*C(I:NJ—1)+C(1:NJ—?))/Z/H

TRCUR (NJ)=EXCUR#* (DEXP (~-EFORT#*ALPHA#C (1, NJ))

1-DEXP (EFORT#ALPHC#C (1, NJ)))

WRITE(19, 200)N, NJ, ITPRT, ITCNT, THICK; H; CNJ, EXCUR,
1ALPHA, ALPHC, APUV, CAPPA

WRITE (19,201) ITCNT

WRITE (19,202) (J,C(1,J), CUR(J), TRCUR(J), J=1, NJ)

05

ggR;AT('\n’:'N=’:IB.16X;'Nd='13.12Xa'ITPRT="13»10X.'ITCNT='13/
1/THICK=", G12. 8, 3X, ‘H=", G12. 5, 4X, ‘CNJ=", 812. 5, 3X, ‘EXCUR=", 612. 5/
2’ALPHA=', @12. 5, 3X, ‘ALPHC=", §12. 5, ‘APUV=", G12. 5, 2X, ‘CAPPA=', G12. 3)
FORMAT( ‘\n’, “ITCNT=", I3/’\n’, T10, ‘J’, T19, ‘POTENTIAL’, T35,
1/CURRENT AT J+1/2/,T58, ‘TRANSFER CURRENT‘/)

FORMAT(’ “, 3X, I3, 5X, €12. 5, 9X, 612. 5, 13X, 612. 5)

8STOP

END

NJ= 21 ITPRT= 1 ITCNT= 3

THICK= . 10000e~02 H= . 30000e-04 CNJ= . 10000e-01 EXCUR= 6&0. 000

ALPHA= 1. 5000 ALPHC= . 50000 APUV=  5000. 0 CAPPA= 30. 000
ITCNT= 3

J POTENTIAL CURRENT AT J+1/2 TRANSFER CURRENT
i . 73360e~-02 -3.7748 -GO.;Z?
2 . 73623e-02 -11. 330 —30;290
3 . 73812e-02 -18. 902 --80.404
4 . 74127e-02 -26. 503 —30.564
3 . 745369e-02 -34. 144 —30ﬂ o
é . 75138e-02 -£1. 837 —3°ﬂ721
7 . 75835e-02 -49, 592 *31.319
8 . 766620-02 -57. 422 -31. 22
9 . 77619e-02 -&65. 337 :gi.gsa
10 . 78708e-02 -73. 350 32'439
11 . 79930e-02 -81. 473 —32.971
12 . 81288e-02 -89. 7135 :33,501
13 . 82783e-02 -98. 091 4;077
14 . 84418e-02 ~106. 61 -3 .701
15 . 86195e-02 -115. 29 —32.371
16 . 88117e-02 -124. 13 -3 .090
17 . 9018%e-02 -133. 15 - 6.956
i8 . 92404e-02 -142. 36 *2?.670
19 . 94777e~02 -151.78 - ‘532
20 . 97307e-02 -161. 41 —38.443
21 . 99997e-02 -146. 23 -39.
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study is not trivial. It requires starting
Wwith a scope. The completeness, accuracy,
and detail present in the scope define the
maximum accuracy of the economic estimate.
A good economic estimate demands that one
spend a significant fraction of his effort
toward reducing the un-addresssed items and
elements to the irreducable minimum, con-
Sistant with the time available to make the
economic analysis.
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e It is hardly necessary in this day of econo- It is extremely helpful to define the
n mic emphasis, encountered in every walk of purpose of the economic projection at the
fleatflee life and highlighted in nearly every news outset. Economic analyses may be undertaken
journal, to define the importance of the for a variety of reasons. Examples of some
) . economic aspects of electrochemical pro- reasons are:
Figure 1. Schematic representation illustrating how cesses for the scientist, engineer, or pro-
potential drop across an electrolytic cell is subdivided cess operator. Nevertheless, several points 1. Justify necessary approvals to construct
.into categories. ’ should be emphasized since conceeding in a facility.
general that "the economics are of primary 2. Support requests for funds to do project
importance" does not equate to application engineering.
of the principle that ultimately economics 3. Obtain approvals/funds to do advance
- will determine whether the process plant is materials procurement.
built (or changed), as well as when, where, 4. Select between alternate equipment.
by what amount and in what ways. First, one 5. Select between alternate processes.
key factor, is the principle that there is 6. Direct research program planning.
always an alternate to the specific propo- 7. Direct process development planning.
sal under consideration; there are fre- 8. Justify preliminary exploratory work.
quently numerous alternates, and selection 9. Compare competitive
of the proper alternate as the base case for equipment/processes.
. economic comparison is quite necessary to a 18. Make decisions to implement minor pro-
correct economic decision making process. fit improvement programs.
11. Support task force work.
£ Second, a useful economic analysis

The first three to five of these
examples depending on the size of the orga-
nization will ordinarily be handled by pro-
fessional cost estimators and economic
analysts. Anyone of the latter examples
frequently falls as an assignment to any
company engineer or scientist.

Having identified the purpose of the
work we can determine whether reasonable
accuracy is needed in the total figures or



