
Solving a non-linear electrochemical current distribution problem using BAND in Python 
Joshua Gallaway, Northeastern University Department of Chemical Engineering 
10 Nov 2017 

We wish to solve the boundary value problem of Tafel kinetics in a concentration-independent 
porous electrode in Cartesian coordinates. An analytical solution to this problem is given in 
“Theoretical Analysis of Current Distribution in Porous Electrodes,” John S. Newman and Charles 
W. Tobias, J. Electrochem. Soc., 109 (12) 1183-1191, 1962.1 We will use Newman’s BAND 
procedure to prepare a numerical solution, using Python.2 This will allow us to compare the 
analytical and numerical solutions, to assure that our BAND computer code is correctly 
operational. This is an important step before moving on to more difficult problems that do not 
have an analytical solution. 

1. Setting up the problem to be solved using BAND 

The problem is defined in Newman and Tobias by equations [12], [14], [11], and [10]. The 
analytical solution is given in equation [17]. We will define the problem thus: 

Conservation of charge: 

1 𝑑𝑖!
𝑑𝑥 +

𝑑𝑖"
𝑑𝑥 = 0 𝑥 = 𝐿, 𝑖! = 𝐼 

Tafel interfacial kinetics: 

2 −
𝑑𝑖"
𝑑𝑥 = 𝑎𝑖#𝑒𝑥𝑝 .−(1 − 𝛼)

𝑛𝐹
𝑅𝑇

(𝜙! − 𝜙")8 𝑥 = 0, 𝑖" = 𝐼 

Ohm’s law for electronic current in the solid: 

3 𝑖! = −𝜎
𝑑𝜙!
𝑑𝑥  𝑥 = 0, 𝑖! =

𝑑𝜙!
𝑑𝑥 = 0 

Ohm’s law for ionic current in the liquid: 

4 𝑖" = −𝜅
𝑑𝜙"
𝑑𝑥  𝑥 = 0, 𝜙" = 0 

 

Here the sign convention is altered in Eq. 2, compared to Newman and Tobias. (Terms pertaining 
to this are highlighted.) The single spatial direction, x, is the distance across the electrode, with x 
= 0 at the separator and x = L at the current collector. The problem presents four equations and 
four unknown variables, all of which are functions of location: 

𝑖! = 𝑓(𝑥) 𝑖" = 𝑓(𝑥) 𝜙! = 𝑓(𝑥) 𝜙" = 𝑓(𝑥) 

 

To solve this problem we must first linearize Eq. 2, which has two of the unknown variables in an 
exponential term. We assume there is a nearly correct trial value of the variables, 𝜙!#, and that 
this is separated from the current value by a small change variable,	Δ𝜙!. Thus: 

𝜙! = 𝜙!# + Δ𝜙! 𝜙" = 𝜙"# + Δ𝜙" 

 



We substitute these into Eq. 2, ignoring any terms quadratic in the change variables. Then we 
substitute back: 

Δ𝜙! = 𝜙! − 𝜙!# Δ𝜙" = 𝜙" − 𝜙"# 

 

The linearized version of Eq. 2 is thus: 

−
𝑑𝑖"
𝑑𝑥 − 𝑎𝑖#𝑒𝑥𝑝

[𝛽(𝜙!# − 𝜙"#)]𝛽𝜙! + 𝑎𝑖#𝑒𝑥𝑝[𝛽(𝜙!# − 𝜙"#)]𝛽𝜙"
= 𝑎𝑖#𝑒𝑥𝑝[𝛽(𝜙!# − 𝜙"#)][1 − 𝛽𝜙!# + 𝛽𝜙"#] 

 

Where: 

𝛽 = −(1 − 𝛼)
𝑛𝐹
𝑅𝑇 

 

To simplify our job writing equations we further define: 

𝑃 = 𝑎𝑖#𝑒𝑥𝑝[𝛽(𝜙!# − 𝜙"#)] 

 

Finally giving us: 

Tafel interfacial kinetics: 

2 −
𝑑𝑖"
𝑑𝑥 − 𝑃𝛽𝜙! + 𝑃𝛽𝜙" = 𝑃[1 − 𝛽𝜙!# + 𝛽𝜙"#] 𝑥 = 0, 𝑖" = 𝐼 

 

Now we are prepared to cast the equations into the general linear form defined by Newman: 

B𝑎$
𝑑"𝑐$
𝑑𝑥" + 𝑏$

𝑑𝑐$
𝑑𝑥 + 𝑑$𝑐$ = 𝑔

$

 

 

Here the subscript k is the number of unknown variables in the problem, and all the variables are 
denoted by “c.” The constants a, b, d, and g are the coefficients of the variables, their first and 
second derivatives, and the inhomogeneous coefficient. This is just a general way of writing an 
equation that can contain all possible variable terms. 

To use Newman’s terminology we rename: 

𝑐! = 𝑖! = 𝑓(𝑥) 𝑐" = 𝑖" = 𝑓(𝑥) 𝑐% = 𝜙! = 𝑓(𝑥) 𝑐& = 𝜙" = 𝑓(𝑥) 

 



And now the problem is recast: 

Conservation of charge: 

1 𝑐!' + 𝑐"' = 0 𝑥 = 𝐿, 𝑐! = 𝐼 

Tafel interfacial kinetics: 

2 −𝑐"' − 𝑃𝛽𝑐% + 𝑃𝛽𝑐& = 𝑃[1 − 𝛽𝜙!# + 𝛽𝜙"#] 𝑥 = 0, 𝑐" = 𝐼 

Ohm’s law for electronic current in the solid: 

3 𝑐! + 𝜎𝑐%' = 0 𝑥 = 0, 𝑐! = 𝑐%' = 0 

Ohm’s law for ionic current in the liquid: 

4 𝑐" + 𝜅𝑐&' = 0 𝑥 = 0, 𝑐& = 0 

 

Here we can write the coefficients for each equation: 

Eq. 1:  𝑎 𝑏 𝑑 𝑔 
  𝑐! 0 1 0 0 

  𝑐" 0 1 0  

 𝑐% 0 0 0  

 𝑐& 0 0 0  
 

Eq. 2:  𝑎 𝑏 𝑑 𝑔 
  𝑐! 0 0 0 𝑃[1 − 𝛽𝜙!# + 𝛽𝜙"#] 
  𝑐" 0 -1 0  

 𝑐% 0 0 −𝑃𝛽  

 𝑐& 0 0 𝑃𝛽  
 

Eq. 3:  𝑎 𝑏 𝑑 𝑔 
  𝑐! 0 0 1 0 

  𝑐" 0 0 0  

 𝑐% 0 𝜎 0  

 𝑐& 0 0 0  
 

Eq. 4:  𝑎 𝑏 𝑑 𝑔 
  𝑐! 0 0 0 0 

  𝑐" 0 0 1  

 𝑐% 0 0 0  

 𝑐& 0 𝜅 0  
 

 

Now we will solve the problem using the BAND function in Python. We have four equations and 
four unknowns, and will break up the distance x into 100 discrete segments, so we define: 

N = 4 
NJ = 100 

The tables above will be duplicated at all 100 points in the domain. The way BAND expects this 
information is N x NJ x N matrices for a, b, and d, and an N x NJ matrix for g. In Python, we 
initialize the matrices: 

sma = zeros([N,NJ,N])      
smb = zeros([N,NJ,N])      
smd = zeros([N,NJ,N])     
smg = zeros([N,NJ]) 



The first index represents the equation number. The second index is the position. The third index 
is the unknown variable number. Now we must transcribe the non-zero coefficients above into the 
appropriate spots in the matrices. As an example we consider smb, which contains the values of 
b for all positions. Thus: 

smb[0,:,0] = 1 
smb[0,:,1] = 1 
smb[1,:,1] = -1 
smb[2,:,2] = sigma 
smb[3,:,3] = kappa 

 
Recall that Python indexes from zero instead of one, so the top command sets the value of b for 
the first variable in the first equation to 1 at all NJ positions. The second command does the same 
for the second variable in the first equation. Et cetera. This is done until all the non-zero a, b, d, 
and g values are entered. To visualize this, we have defined a matrix: 

smb = 

 1 1 0 0  Eq. 1 
 0 -1 0 0  Eq. 2 
 0 0 𝜎 0  Eq. 3 
 0 0 0 𝜅  Eq. 4 

  
𝑐! 𝑐" 𝑐% 𝑐& 

 
 

 

This matrix has NJ = 100 identical slices into/out of the page, and it tells us the coefficients of the 
first derivatives of all the unknown variables at all positions. However, the equations will be 
different at the boundaries, which are position indexes 0 and NJ-1. The general form for the 
boundary conditions is: 

B𝑝$
𝑑𝑐$
𝑑𝑥 + 𝑒$𝑐$ = 𝑓

$

 

 

We use this expression to build matrices smp, sme, and smf, which then replace smb, smd, and 
smg at the boundaries. Three of the boundary conditions are at x = 0 (position index 0), which we 
will call B.C. 1: 

 

B.C. 1 (x = 0): 

smp = 

1 1 0 0  

sme = 

0 0 0 0  

smf = 

0 Eq. 1 

0 0 0 0  0 1 0 0  𝐼 Eq. 2 

0 0 1 0  0 0 0 0  0 Eq. 3 

0 0 0 0  0 0 0 1  0 Eq. 4 

 
𝑐! 𝑐" 𝑐% 𝑐& 

  
𝑐! 𝑐" 𝑐% 𝑐& 

  
  

 

Here the gray values are just the regular entry for Eq. 1, and the non-gray are the boundary 
conditions. One of the boundary conditions is at x = L (position index NJ-1), which we will call 
B.C. 2: 

 



B.C. 2 (x = L): 

smp = 

0 0 0 0 

sme = 

1 0 0 0 

smf = 

𝐼 Eq. 1 
0 0 0 0 0 1 0 0 0 Eq. 2 
0 0 𝜎 0 1 0 0 0 0 Eq. 3 
0 0 0 𝜅 0 1 0 0 0 Eq. 4 

 
𝑐! 𝑐" 𝑐% 𝑐& 

 
𝑐! 𝑐" 𝑐% 𝑐& 

 
 

 

2. Solving the nonlinear problem using BAND 

The procedure takes the sma, smb, smd, and smg matrices defined above, manipulates them 
into two matrices that define the boundary value problem (ABD and G), and solves them using 
BAND. For a linear problem, a solution in one pass is assured. 

Since our problem is nonlinear, it cannot be solved outright in a single step. Instead, we will 
iterate to a solution. The variables in the nonlinear terms appear in the matrices in two ways: 

unknowns: 𝑐% and 𝑐& trial values: 𝜙!# and 𝜙"# 

 

Iteration will be successful when these values converge within a given tolerance. We begin by 
entering reasonable guesses for the trial values, the problem is solved using BAND, and the 
outputs become the trial values for the next iteration. 

• Define the number of unknowns/equations by setting N. 
• Define the number of spatial points the problem is divided into by setting NJ. 
• Set the convergence tolerance tol and the maximum number of iterations itmax. 
• Fill in the various constants for the problem (𝐼, 𝐿, 𝑎, etc.). 
• Within the FILLMAT function, enter the values of the sma, smb, smd, and smg matrices. 

Also enter smp, sme, and smf for both B.C. 1 and B.C. 2. The code will automatically 
insert these at the domain boundaries. 

• Within the INITGUESS function put in reasonable initial guesses. These are trial values 
of the four unknown variables 𝑐! through 𝑐& at all spatial indices 0 through NJ-1. Thus 
they are stored in an N x NJ matrix cold (which stands for “c-old” or the previous 
iteration’s values of c). 

• Run the code. 

The steps the code will take are: 

1. Create sma, smb, smd, and smg using cold by calling FILLMAT. 
2. Create ABD and G using sma, smb, smd, and smg by calling ABDGXY. 
3. Solving for the values of c (delc) using ABD and G by calling BAND. 
4. Calculate an error by subtracting delc from cold. 
5. Set cold = delc for the next iteration. 
6. If the maximum error is below tol the program will consider the problem converged. If 

not, it will return to step 1. 

 

 



As a test case, let us consider these constants: 

𝐼 0.1 A/cm2 

𝑎 23,300 cm-1 

𝑖# 2 × 10-7 A/cm2 

𝑛 1 eq/mol 

𝐹 96,500 C/eq 

𝑅 8.314 J/mol-K 

𝑇 298 K 

𝜎 20 S/cm 

𝜅 0.06 S/cm 

𝛼 0.5 

 

Note that it is the disparity between 𝜎 and 𝜅 that results in a distribution of current across the 
electrode thickness. If we select an electrode thickness of 𝐿 = 1 cm, the result is as follows: 

 

 

 

 



 

If we select an electrode thickness of 𝐿 = 1 mm, the result is as follows: 
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